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ABBREVIATIONS 
BEF – Belgian frank 
DEM – German mark 
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EU – European Union 
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ABSTRACT  

This paper develops a convergence model of the term structure of interest rates in 
the context of entering the EMU. Compared with the other models developed so far 
in this field, our model specification ensures convergence of the domestic short-term 
interest rates to the euro area ones. We achieve this convergence by stating that the 
spread between the domestic and euro short-term interest rates follows the Brownian 
bridge process. We also develop an econometric counterpart of the theoretical 
model. To address the problem of nonstationarity and nonlinearity of the model, the 
extended Kalman filter for coefficient estimation is applied. 

Key words: term structure of interest rates, the Brownian bridge, the EMU, 
nonlinear Kalman filter. 

JEL classification codes: E43, F36, G12, G15 
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INTRODUCTION  

In recent years, twelve countries have joined the EU.1 All new member states are 
required to join the EMU and adopt the euro as official currency.2 It is important for 
central banks in EMU candidate countries to develop financial asset pricing models, 
since on the basis of these models it would be possible to assess expectations of 
market participants with respect to various future events, for example, the expected 
entry date to the euro area or probability of joining the EMU by fixed date. For 
financial market participants these models would serve as an instrument to properly 
evaluate asset prices. 

In international term structure models, the yield spread between different countries 
is determined by exchange rate risk. After joining the EMU, the yield spread 
between domestic and the euro area government bonds should disappear.3 Such 
event as country's accession to the euro area in the future certainly affects prices of 
financial assets. As long as any uncertainty with respect to this event exists, it will 
be reflected in the term structure of interest rates. 

Jesper Lund in his work analyses the effect of planned EMU membership on 
domestic yield curves in potential member states.(13) The most interesting problems 
arise when there is some uncertainty about the member states of a monetary union or 
the initial possible entry date, or both; therefore, J. Lund pays the main attention to 
this case.  

J. Lund develops an international term structure model which includes EMU entry 
plans, proposes a particular estimation method, and makes empirical conclusions. In 
his model, country's EMU accession date is a random variable. In the empirical 
analysis using interest rate data, J. Lund applies this feature to estimate the market 
implied probability of joining the EMU for each EU member state. Paul de Grauwe 
(4) and Carlo Ambrogio Favero et al. (7) consider similar ideas. David S. Bates (3) 
makes a review of literature and presents a detailed comparison of different methods 
for the EMU entry probability estimation.  

In order to describe the dynamics of short-term spread (between domestic and euro 
interest rates) under the real probability measure, J. Lund applies the standard 
Vasicek process (Ornstein-Uhlenbeck) while extending the risk-neutral process with 
a second factor, i.e. the stochastic price of risk which also follows the Vasicek 
process.  

It is not difficult to prove that in order to avoid an arbitrage opportunity the short-
term spread should converge to zero by the time of entering the currency area. 
J. Lund's specification does not ensure the fulfilment of this condition. In the present 
paper, we develop a term structure model of interest rates for a country that will join 
the euro area in the future. We define the specification of the short-term interest rate 

                                                             
1 In May 2004, Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, 

Slovakia, and Slovenia joined the EU. Bulgaria and Romania joined the EU in January 2007. 
2 Slovenia adopted the euro in January 2007, Cyprus and Malta – in January 2008. Slovakia adopted 

the euro in January 2009. 
3 It is assumed that differences in such factors as liquidity, taxes, and credit risk do not exist. 
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spread dynamics by the Brownian bridge process (14; 15). This stochastic process 
has a property to converge to zero at a specific time moment. Therefore, the 
specification ensures convergence of the short-term spread to zero by country's entry 
into the euro area and thus avoids an arbitrage opportunity at this moment in time. 

In order to model uncertainty of the EMU entrance date, we follow J. Lund (13) and 
use exponential distribution. The model structure is also related to works devoted to 
the modelling of credit risk dynamics (16; 11). 

We also develop an econometric counterpart of the theoretical model. To this end, 
we transform the continuous-time system into a discrete-time one. To address the 
problem of nonstationarity and nonlinearity of the model, we apply the extended 
Kalman filter for coefficient estimation.  

The empirical results evidence that the developed model fits data better than Lund's 
single-factor model for Belgium, France, Italy, and Spain; it is the same for the 
Netherlands, and slightly worse for Finland. In addition, our model contains a 
smaller number of parameters than the rival one (4 against 5). 

Subsection 1.1 of Section 1 provides theoretical grounds of arbitrage-free pricing, 
and on this basis we develop the term structure convergence model under the 
condition that the date of country's entry into the euro area is certainly known. 
Subsection 1.2 introduces the model extension under the condition that the euro area 
entry date is uncertain and derives formulas for the computation of the model term 
structure. Subsection 1.3 focuses on the implications of the model. Section 2 
describes the data, Section 3 presents econometric methods for coefficient 
estimation of the developed model, and Section 4 contains empirical results. The last 
section concludes.  
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1. MODEL SETUP 

1.1 Fixed Moment of Time for Country's Entry into Euro Area 

We consider two currencies – the euro and domestic currency. We denote the euro 
interest rate at time t by R(t) and the domestic one by r(t). Thus, the short-term rate 
in the respective country satisfies  

)()()( ttRtr   [1] 

where δ(t) is the local spread relative to R(t). It is assumed that R(t) and δ(t) are 
driven by independent stochastic processes. The following stochastic differential 
equations describe the dynamics of the local spread and euro short-term interest rate 
under the true probability measure: 

)()(),()( 111 tdwdttftd    [2], 

)()(),()( 222 tdwRdttRftdR   [3] 

where w1(t) and w2(t) are two uncorrelated standard Brownian motion processes, f1 

and f2 are drift coefficients for each process, whereas σ1(δ) and σ2(R) are diffusion 
terms.(14) There are two market prices of risk, λ1, λ2, each corresponding to the 
source of uncertainty, w1(t) and w2(t) respectively. 

Now a claim with a payoff in currency i at time T, given by the function hi(T), is 
considered. Under the no-arbitrage principle, its price at time t in units of currency i, 
obeys the following expression: 
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where Qi is the risk-neutral probability measure for currency i, and is the 

conditional expectation operator under the probability measure Q.(5)  
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For the price at time t of currency i zero-coupon bond maturing at time T in units of 
currency i, we have 
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Since it is obvious that after the entry into the euro area the term structures of 
domestic market and euro area interest rates will be the same, shortly before the euro 
area accession date the domestic zero-coupon bond prices denominated in domestic 
currency must almost coincide with the euro area zero-coupon bond prices 
denominated in euro. Besides, this fact is independent of the exchange rate level at 
the moment of the euro area entry. 
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Let PE(T*, T) be the time T* price of a euro bond maturing at time T. From equation 
[4] we get that the current (time t) domestic bond price for a given EMU 
membership date T*, denoted by P(t, T, T ), is equal to 
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where the expectation is taken under Q, the risk-neutral probability measure for 
domestic currency. From equation [5] we obtain the time T* price of a euro bond 
maturing at time T  
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It is taken into account that after the euro area entry time measures Q and QE must 
coincide.  

The Radon-Nikodym derivative defines the relationship between two probability 
measures.(5) Assuming that the Radon-Nikodym derivative is independent of Rt, we 
can write the price of a euro bond as 
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[8]. 

Thus, it follows that we can obtain the euro bond price by taking expectations under 
either the domestic risk-neutral probability measure Q or euro measure QE. 

Substituting equation [7] into equation [6] and using the law of iterated expectations, 
we obtain 
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[9] 

where  
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is the local discount factor relating the domestic and euro bond prices. If the time to 
maturity T < T*, formula [10] can be rewritten as  
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The subscripts t and δ denote that the expectation shall be taken, given the following 
dynamics of the factor: 

  )(~))(()),(())(()),(()( 1111 swdsdssssssfsd          [12], 

),(t    [13] 

where w~  is a Wiener process under measure Q.  

Formula [11] is the Feynman-Kac representation of the solution of the following 
parabolic partial differential equation:  

            0,,
2

1
,),()(),(, 2

1111  tDtDtDttftDt     [14] 

with the terminal condition 

.1),( TD      [15]. 

It is further assumed that the drift term in equation [2] has the following form: 
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      [16] 

and σ1(δ) = σ = const. This implies the following stochastic differential equation 
under the true measure P: 
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    [17]. 

It is assumed that T* is the time of entry into the euro area. The process defined in 
[17] is well known in the stochastic process theory as the so-called Brownian 
bridge.(14;15) The property of this process is that it is equal to zero at time T* with 
probability 1. The purpose of this specification is to ensure convergence of the 
spread to zero by the date of entering the euro area, which guarantees equal domestic 
and euro interest rates. As the true measure P and risk-neutral measure Q are 
equivalent, the events with probability 1 under measure P will also have probability 
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1 under measure Q. Therefore, probability of event {δ(Т*) = 0} will be equal to 1 
also under the risk-neutral measure Q.4 

The motivation to choose such specification is that if the spread was non-zero at the 
moment of entry, arbitrage would be possible. The exchange rate alone would be 
insufficient to accommodate the non-zero spread because at this time the former 
would be fixed to some level known in advance. It is not possible to guarantee a zero 
short-term rate spread just before joining the euro area using the conventional model 
specifications (Vasicek, Cox-Ingersoll-Ross, multi-factor affine, etc). 

Substituting equation [16] into equation [14], we get  
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We also allow the price of risk λ1 to be constant. Let us consider now the case of the 
affine term structure model  

 )() A(exp)  ,(  BD   [19] 

where 0 tT . 

Then the various partial derivatives of D(δ, τ) are 
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Inserting equations [20] and [21] into partial differential equation [18] gives the 
following expression: 
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4 Under the risk-neutral measure the short-term spread process is ).(~)(
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It is not difficult to show that this process has the following representation (if λ is constant): 
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 , where the first and second terms 

represent the standard Brownian bridge process from δ(0) to 0, and the third term is deterministic 
function with 0 terminal value at T*. 
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The last equation holds for all δ and τ values, and we can conclude that the two 
terms in brackets are equal to zero. This reduces the problem to solving the 
following system of two ordinary differential equations: 

0)()(
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Solving the system of equations [23] and [24] under initial conditions that A(0) = 0 
and B(0) = 0 gives the solution of affine term structure model [19] 
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 [26]. 

1.2 Random Moment of Time for Country's Accession to Euro Area 

The decision on a country's accession to the euro area and its date is made by the EU 
institutions. Prior to it, there is uncertainty of some degree with respect to the 
moment of time T*. To accomplish the model, it is necessary to define probability 
distribution of T* at time t (under the risk-neutral measure). The probability that a 
country will not join the euro area prior to time u is defined in the following form: 

  ))(exp()Pr( * 
u

t

dssuTt  , 0)( s   [27]. 

The probability density function is the derivative of distribution function with 
respect to u  

     ))(exp()()Pr(1)Pr(),( ** 
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d
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where π(s) is a hazard function. 

Given the distribution of Т*, by computing the expected value of equation [9] for all 
possible euro area accession dates Т*, we can obtain the bond price 
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where  ),,(),,(exp),,( *
1

** TTtBTTtATTtD   (from equation [19]) but А and В1 
follow from equations [25] and [26] respectively. 

We define the hazard function in the following form (13): 
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where T
~

 is the moment of time which corresponds to some certain time in the 
future, and the constant θ > 0. The specification of this model does not admit 

accession to the euro area before date T
~

. 

The function D(t, T, T*) satisfies the following equation: 
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Thus, given this hazard function, we can rewrite the bond price from equation [29] 
as  
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[31], 
or  

P(t,T) = PE(t,T)F(t,T) [32] 

where 
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Taking into account equations [31] and [32], we can compute yield to maturity for 
zero-coupon bond: 
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[34] 

where yE(τ) is the yield to maturity for euro bonds with the term to maturity 
,tT   and )(),( STtS   is yield spread of the respective term to maturity. 

1.3 Implications of Model 

In Lund's model, yield spreads for rates with pre-entry date maturities can not be 
affected by the EMU accession, which, however, is not consistent with the data (see 
Charts 1–3). In the proposed model, the EMU affects all maturities, which, in our 
opinion, is more realistic.  

To show that the proposed model gives a plausible outcome, we consider numerical 
examples. The first example deals with a country having a strong probability of 
joining the EMU. For this country, coefficient θ = 4, i.e. the probability of joining 
the EMU within 1 year from date T~  is equal to p = 1 – e–θ = 0.98. The current value 
of state variable is δ = 0.02. For the second country, coefficient θ = 0.01, i.e. the 
probability of joining the EMU within 1 year from date T~  is equal to p = 1 – e–θ = 
0.01, or is very low.  

Chart 1 
2-year interest rate spreads on transactions in BEF, FRF and NLG to DEM  
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Chart 2 
10-year interest rate spreads on transactions in BEF, FRF and NLG to DEM  

 
 
 

Chart 3 
2- and 10-year interest rate spreads on transactions in ESP, FIM and ITL to DEM  

 

Chart 4 displays the term structure of the spread for both countries with the 3-year 

term ( 3
~  tTu ) and 1-year term to date T~  ( 1

~  tTu ). For the country 
with a high probability of joining the EMU, the term structure of interest rate spread 
is rapidly decreasing with maturity in both cases; however, the shorter the term to 
the possible EMU accession date, the more rapid the decrease. The short-term 
interest rate spread is about 2%, whereas the 10-year spread is 32 basis points for the 
3-year term and 12 basis points for 1-year term. For the low probability country, the 
term structure of interest rate spread is decreasing very gradually and is almost 

independent of term .
~

tT   The 10-year interest rate spread slightly exceeds 1.6%. 
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Chart 4 
Theoretical term structure of interest rate spread  

 

For the country with strong probability of joining the EMU θ = 4, i.e. the probability 

of joining the EMU within 1 year from date T
~

 is equal to p = 1 – e–θ = 0.98 and the 
current value of state variable is δ = 0.02. For the second country, coefficient  
θ = 0.01, i.e. the probability of joining the EMU within 1 year from date T~ is equal 

to p = 1 – e–θ = 0.01, i.e. very low. tTu  ~
 – term to the possible EMU accession 

date .
~
T  

2. DATA 

For the estimation of model parameters following J. Lund's paper (13), we use 
money market and swap rates. The money market data include interest rates with 
maturities of 1, 3, 6 and 12 months, whereas the swap market data include rates with 
maturities of 2–5, 7, and 10 years. The following currencies were considered: BEF, 
FRF, FIM, ITL, ESP, and NLG. All data are spreads between the corresponding 
national currency and DEM yields. The yields are sampled weekly (Wednesdays) 
from 14 August 1996 to 12 August 1998. We choose such a sample due to 
pronounced observable convergence of yield spreads to zero in this period, with the 
data revealing properties of the Brownian bridge process (see Charts 1–3).  

3. ESTIMATIONS 

Let us assume that n interest rates with maturities τ1, τ2, … , τn exist in the market. 

The corresponding spreads with respect to euro interest rates are ),(
~

1S …, ).(
~

nS   

In this case, taking into account equation [17], the model developed above can be 
written as 


 dwdt

tT
d 




*
 [35], 

)(),,,(),(
~

ttStS iii   , i = 1, 2, … , n  [36] 
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where 
i

i
i

tF
tS





),,,(log

),,,(   is the theoretical spread from equation 

[34] (S depends on δ since it follows from equation [19] that D depends on δ), 
 is the measurement errors, ),0(~ 2INi    is the vector of model parameters, and 

ψ = (θ, ση, σδ, λ1). 

The system of equations [35] and [36] determines a nonlinear continuous-time state-
space system where equation [35] is a transition equation and equation [36] is a 
measurement equation.(8; 9)  

In order to estimate the parameter vector ψ, we need to transform the system of 
equations [35] and [36] into a discrete-time form and use the extended Kalman filter 
(9) due to nonlinearity of measurement equations5 (see Appendix for details of this 
procedure).  

4. EMPIRICAL RESULTS 

The estimation results obtained with the proposed model are reported in the table. 
All parameters are statistically significant. Parameterisation of the hazard function in 
equation [35] means that the probability of joining the EMU within one year from 
January 1999 is equal to 1 – exp(–θ). The estimation of parameter θ is to some 
extent consistent with J. Lund's estimation.(13) There was a strong probability of 
joining the EMU for Belgium and France. For Finland, Italy and Spain the 
probability was small. For the Netherlands parameter θ is equal to 0.86, which 
means that the probability of joining the EMU within one year from January 1999 is 
equal to 0.58. This probability appears to be too small. It can be explained by the 
fact that for the Netherlands the spread for short-term maturities did not converge to 
zero over the considered sample but only fluctuated around it (see Chart 1). 
Therefore, it is not possible to capture the dynamics of the observable short spread 
with the help of the Brownian bridge process.  

                                                             
5  We can not apply GMM (Generalised Method of Moments) due to non-stationarity of the model. 
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Table 
Comparison of estimates of Brownian bridge model with Lund's single-factor model (13) with 
constant hazard function 
(both models are for yield spreads to DEM) 

Currency Model θ ση × 10–3 σδ × 10–3 λ k 
 
BEF Brownian bridge 45.1 0.53 5.60 0.118 – 
  (0.06) (0.01) (0.43) (0.001) – 
 Lund's model 266 0.63 3.62 –0.0006 0.207 
  (0.3) (0.02) (0.40) (0.0728) (0.034) 
ESP Brownian bridge 0.148 1.49 5.39 0.920 – 
  (0.001) (0.03) (0.10) (0.002) – 
 Lund's model 0.599 1.98 5.74 0.0205 0.939 
  (0.061) (0.04) (0.54) (0.0216) (0.118) 
FIM Brownian bridge 0.0810 1.18 5.93 –0.306 – 
  (0.0002) (0.03) (0.04) (0.002) – 
 Lund's model 0.247 1.10 3.53 2.33 × 10–6 –0.440 
  (0.053) (0.04) (1.70) (2.07 × 10–5) (0.283) 
FRF Brownian bridge 3.93 0.74 4.12 –0.396 – 
  (0.118) (0.02) (0.51) (0.055) – 
 Lund's model 268 0.75 3.50 1.38 × 10–6 0.893 
  (41.1) (0.03) (0.22) (1.11 × 10–5) (0.040) 
ITL Brownian bridge 0.159 2.56 7.74 1.034 – 
  (0.001) (0.06) (0.16) (0.001) – 
 Lund's model 0.595 3.39 7.90 –1.50 × 10–6 1.10 
  (0.012) (0.09) (0.22) (8.46 × 10–6) (0.034) 
NLG Brownian bridge 0.857 0.58 3.88 –0.2418 – 
  (0.084) (0.01) (0.43) (0.034) – 
 Lund's model 258 0.58 5.91 1.839 –0.132 
  (14.3) (0.01) (0.66) (0.231) (0.028) 

 
The Brownian bridge model uses the extended Kalman filter for coefficient estimation (for details see 
Appendices). Lund's model is a single-factor model with constant hazard function (13)). The sample 
includes the period from August 1996 to August 1998. ση is standard deviation of measurement error 
for observable yield spread to DEM, σδ is the instantaneous volatility of short-term spread, λ is the 
price of risk, k is the mean reversion parameter for Lund's model. The hazard function π(s), is zero for 

Ts
~

  and θ for , where Ts
~ T

~  is the moment of time before which the model does not admit 
accession to the EMU. The probability that a country will not join the EMU before time u is 

  ).)(exp(*)Pr( 
u

t

dssuTt   

T* stands for the date of joining the EMU.  
Standard errors are in parenthesis. 
 
In order to evaluate the in-sample fitting performance of the Brownian bridge model, 
we compare its standard deviation of the measurement error with the one in a single-
factor version of Lund's model (13) with the constant hazard function. In particular, 
under the real measure P, the dynamics of short-term yield spread is governed by the 
Vasicek process 

).()()( 1 tdwdttktd    

We use the extended Kalman filter to estimate five parameters of the single-factor 
version of Lund's model (13) with constant hazard function k, λ, σδ, θ and ση, where 
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k is the mean reversion parameter, σδ is the instantaneous volatility of the short-term 
interest rate spread, λ is the price of risk, and ση is the standard deviation of 
measurement error. The estimation procedure is described in Appendix 2. In 
parameter estimation of the model, we use the same sample as for the Brownian 
bridge model. 

The rationale to choose the specification of Vasicek model without unconditional 
mean lies in the property of the conditional expectation of the process  )(

0
tEt   to 

converge to zero as time t tends to infinity. This property can capture convergence in 
the historical time series.  

The Table shows the estimation results for both models. The comparison of standard 
deviations of measurement errors for the two models shows that the proposed model 
gives a better in-sample fitting for almost all countries, except for the Netherlands 
and Finland. Moreover, it contains a smaller number of parameters than the rival one 
(4 against 5). 

In the case of the Netherlands, the standard deviations of measurement error are 
equal for both models. This can be explained by the abovementioned incompletely 
correct specification of the Brownian bridge process for the short-term spread over 
the considered sample. For Finland, the Brownian bridge model gives a slightly 
greater standard deviation of measurement error, which can be accounted for by the 
observed diverging term structure of yield spreads (see Chart 3). The latter implies 
that an additional factor is needed to describe the behavior of Finnish yield spreads 
correctly.  

It should be noted that in Lund's model the mean reversion coefficient k has a 
negative sign for Finland and the Netherlands. It suggests that the model dynamics 
becomes unstable and thus lacks any economic sense. In this case, parameter k 
serves only for a better fit.  

16 
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5. CONCLUSION 

In this paper, we develop a term structure of interest rate convergence model within 
the no-arbitrage pricing framework. The model describes the convergence of EMU 
candidate countries' interest rates to the euro area interest rates. We consider both 
fixed and random EMU entry dates in the model setup.  

Compared with other models developed so far in this field (3; 13), the model 
specification developed in this paper ensures convergence of domestic short-term 
interest rates with euro ones by the entry date. It is achieved by assuming that the 
factor, the interest rate spread, follows the Brownian bridge process. Such an 
assumption avoids arbitrage opportunity in the model at the time of entering the 
EMU. The derived formulas lead to a more correct evaluation of prices of interest 
rate instruments and hence a more accurate extraction of market expectations from 
these prices.  

We also develop an econometric counterpart of the theoretical model. The paper 
provides a framework of the econometric estimation for the model using the 
extended Kalman filter. 

Empirical results show plausible parameter values. We compare the standard 
deviation of measurement errors for the proposed model and for J. Lund's version of 
the Vasicek model. The standard deviation of measurement errors in our model is 
smaller than in rival ones for Belgium, France, Italy and Spain; it is the same for the 
Netherlands, and slightly worse for Finland. For the Netherlands, the spread at short 
maturities did not converge to zero but only fluctuated around it over the considered 
sample, implying that the Brownian bridge process is not a completely correct 
specification for a short-term spread. For Finland, the observed term structure of 
yield spreads is diverging, thus an additional factor is needed to describe it correctly. 
In addition, our model contains a smaller number of parameters than the rival one 
(4 against 5). 

The introduced model can be applied to develop an interest rate term structure model 
not only for a country planning to join the euro area but for any country planning to 
join any currency area. For example, the model could also be applied to Southeast 
Asian countries that negotiate a possibility to create their own currency area.  
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APPENDICES  

1. Derivation of Discrete-Time State-Space Model Representation  

Let us assume that n interest rates with maturities τ1, τ2, …, τn exist in the market. 

The corresponding spreads with respect to euro rates are ),(
~

1S ),(
~

2S …, ).(
~

nS   In 

such a case, taking into account equation [17], the model developed above can be 
rewritten as 


 dwdt

tT
d 




*
 [37], 

)(),,,(),(
~

ttStS iii   , i = 1, 2, …, n  [38] 

where 
i

i
i

tF
tS





),,,(log

),,,(   is a theoretical spread from equation [34] 

(S depends on δ, since it follows from equation [19] that D depends on δ), 
 is the measurement error, ),0(~ 2 INi    is the vector of model parameters, and ψ 

= (θ, ση, σδ, λ1). 

Let us define the vectors 

 ),,,(...,),,,,(),,,,(),,( 21 ntStStStS   , 

 ),(
~

...,),,(
~

),,(
~

)(
~

21 ntStStStS    

and 

 n ...,,, 21 . 

The system of equations [37] and [38] determines a state-space system where 
equation [37] is a transition equation and equation [38] is a signal or measurement 
equation.(8; 9)  

An exception of the problem is also random distribution of T* in equation [37]. 
Following the conventional approach of the stochastic differential equation theory 
(15), we define the solution of equation [37] as a function δ(t) which satisfies the 
following integral equation: 

   


 













t

tT

TT
t

t

sdwdTeds
sT

s
tt

0

*

0

)(
)(

)()(
~

*
~

*0   .  

A change in the order of integration in the first integrals gives 
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where 
 


1

exp
dt

t

xt)(
Ei(x)  is a special function known as exponential integral.(1) 

The last expression is equivalent to the following stochastic differential equation: 

     )()()()()(
~

)(
~

tdwttBtdwttTEietd tT      [39]. 

Since the observations are discretely sampled, in order to produce econometric 
estimation, we need to transform the continuous-time state-space system of 
equations [37] and [38] into a discrete-time form. For this purpose, we consider an 
expression d(X–1(t, t0)δ(t)) where X(t, t0) is a fundamental solution of the following 
ordinary homogeneous differential equation: 

     dttttBdttttTEiettd tT  
00

~

0 ,X()(,X(
~

,X(     [40] 

with initial condition X( , ) = 1  [41]. 0t 0t

From equation [39] we can obtain  
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[42]. 

Integrating equation [42] from t0 to t and taking into account equation [41] we obtain 

 
t

t

sdwtstttt
0

)(,(X)()(,(X 0
1–

00
1–   [43] 

or  

 
t

t

sdwtstttttt
0

)(,(X,X()(,X()( 0
1–

000   [44]. 

Thus, in order to obtain a discrete-time version of equation [39], we need to find 
function X(t,t0). For this purpose, equation [40] can be rewritten as 

    dttTθEiθe
X(t,t

dX(t,t tTθ 

  ~~

0

0  [45]. 

Integration of equation [45] from  to t, taking into account equation [41], using the 

definition of function Ei, and changing the order of integration result in 
0t
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[46], 

where the first integral is 
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The second integral is computed in the same way as 
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For the third integral we have 
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From equations [46]–[49] it follows that 
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or taking the exponential of both sides yields 
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Assuming that ti are known discrete-time moments, i = 1, 2, …, N, and the time 
interval between two consecutive time moments is given by  it follows 

from equation [50] that 

,1 ii tt
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Thus, from equations [44] and [51] we have obtained a recursive dependence of 
)(t  on its previous value 
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The stochastic integral )( it has normal distribution with zero conditional 

expectation 0))((
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ti–1. Conditional variance of 
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Therefore, the system of equations [37] and [38] can be rewritten in a discrete-time 
state space representation as 

 iiiii ttttt    )(,X()( 11                          [52], 
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)()),(,()(
~

iiii tttStS     [53] 

where X(ti,ti–1) is determined by equation [51] and )),(,(  ii ttS  by equation [34]. 

2. Extended Kalman Filter Setup 

The measurement equation [53] is nonlinear with respect to state variable ),( it  

hence, we need to use the extended Kalman filter.(9) In contrast to Lund's approach, 
we use the extended Kalman filter but not the iterative extended Kalman filter. This 
enables us to essentially speed up the filtering algorithm and, consequently, 
maximisation of the likelihood function.  

To obtain the extended Kalman filter, we shall linearise equation [53] at 
point ),( 1ii tt  where    1111 ),(   iiiiii ttttXtt   is a one-step-ahead state 

prediction at time moment ti–1 
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The components of derivative vector 




 ),,( itS

 can be derived from equations 
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and F(ti, δ, ψ) is given by equation [33]. 

Now, let us define the innovation vector 
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The variance of prediction of observables is 
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where 
1ii tt

 is the prediction variance of factor δ at time moment : 1it

iiiii tiittiitt ttXttX   
)',(),( 11 111

 [57], 

it
H is the covariance matrix of vector )( it ,  where I is a unit matrix. ,2IH

it 

Using information at moment ti, the state updating equation is 
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whereas the variance of this estimation is given by  

1

1111 ),)(,(~),)(,('~

1





















 



 iii

t
iii

tttt

tttS
H

tttS
iiiii

  [59]. 

Therefore, the recursive estimation technique may be used in the same way as in the 
standard Kalman filter. Choosing any initial values 0  and  and using formulas 

[54]–[59], we can recursively compute innovations 

0

 it  and their covariance 

matrixes   .
it

F

Now, let us define the log-likelihood function 

   



N

i
itit tFtFL

ii
1

1'log
2

1   [60] 

and, using some numerical method, calculate the parameter vector   which 
maximises the likelihood function. The most complicated task in this procedure is 
computing function S and its derivatives at each step, since S is defined by log from 
improper integrals in equation [33], which are rather nonlinear functions. The use of 
numerical methods is vitally required. 
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